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Abstract

Small depth quantum circuits have proved to be unexpectedly powerful in comparison to
their classical counterparts. We survey some of the recent work on this and present some open
problems.

1 Introduction and Motivation

Quantum circuits are the most natural and general formulation of quantum computation. They are
general in the sense that they are a universal model; any quantum computation can be efficiently
simulated by a quantum circuit [27, 19]. They are natural in that a quantum computation (or
quantum algorithm) can best be understood as a collection of qubits being acted on by quantum
operators represented as (defined by) a tensor product of quantum gates. Although the quantum
circuit model is quite different than the classical one, it has nevertheless proven to be quite fruitful
to look to classical circuit models for insight. Classical circuits of small depth4 (e.g., polylog as in
the class NC) have been proposed as realistic models of parallel computation. Furthermore, very
small (i.e., constant) depth classical circuits present us with computational models for which we
can actually prove interesting lower bounds. What happens when we extend these concepts to
quantum circuits?

The answer is a bit surprising, and leads fairly quickly to interesting variants of the funda-
mental problems of quantum computing. For example, consider the class AC0 of constant-depth,

1 c© D. Bera, F. Green, S. Homer, 2007.
2Boston University {(dbera|homer)}@cs.bu.edu.
3Clark University fgreen@black.clarku.edu.
4See Vollmer [26] for the basic definitions and facts about classical circuit classes.
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polynomial-size circuits consisting of NOT together with unbounded fan-in and fan-out AND and
OR gates. Some interesting functions can be computed in this class (addition of n-bit numbers for
example), and some cannot (e.g., parity [11]). It would be interesting to see what an analogous
quantum complexity class would look like. But if we try to translate the class AC0 into the quantum
setting, we are faced with an immediate problem. The unbounded-fanin “quantum AND gate,” the
generalized Toffoli gate (which also encompasses negation and hence OR as well) does not allow for
fanout in any way we may take for granted. The reason is the “no-cloning theorem,” which says
that it is in general not possible to make a copy of a quantum state. One can, however, make copies
of classical bits, which suggests the idea of introducing a unitary operator to implement fanout of
classical bits. (A similar operation is really implicit in the AC0 model; we solder multiple outgoing
wires to an AND gate, obtaining copies of the output. While it is not entirely realistic to have an
unbounded number of wires fanning out of the gate even classically, this is a useful abstraction out
of which the definition of AC0 arises.)

We therefore seem to have two candidates for quantum analogs of AC0. One, which just includes
generalized Toffoli gates and single-qubit gates, is called QAC0. The other, which includes fanout
gates, is called QAC0

wf . The latter appears to be the more realistic version, since it is straightforward
to see that it includes AC0. However, we will see in this article that QAC0

wf is much more powerful
than its classical counterpart. There nevertheless remains much that we do not understand. For
example, the classical version of QAC0 (in which AND and OR gates have at most constant fanout)
is provably weaker than AC0. In stark contrast, it is unknown to this day if QAC0 is the same as
QAC0

wf .
This gives an interesting theoretical framework in which quantum analogs of classical circuit

models are provably more powerful. But does it have bearing on reality? It might. Realizable
quantum computations will have very limited duration, due to short coherence times, which suggests
that highly parallelized quantum circuits (such as those we will see can be obtained using fanout)
are desirable. Fanout gates as well as Toffoli gates might actually be feasible to build via ion trap [3]
or bulk NMR techniques [12]. It may therefore be of more than mere theoretical interest to explore
their power, both intrinsic and relative to each other.

2 Circuit Elements and Classes

In this brief survey, we will be unable to provide a review of quantum computation. For a quick
introduction, we recommend Fenner [7] or Fortnow and Rogers [10]; for an in-depth treatment, see
Nielson and Chuang [17].

To make the treatment as self-contained as possible, we introduce the following notation. Let
H denote the 2-dimensional Hilbert space spanned by the computational basis states |0〉, |1〉. Let
H1, . . . ,Hn be n copies of H. By Bn we denote the 2n-dimensional Hilbert space H1 ⊗ · · · ⊗ Hn

spanned by the usual set of computational basis states of the form |x1, . . . , xn〉, where each xi ∈
{0, 1}. A “state over a set of n bits” is a state in Bn. Let Un denote the set of unitary matrices
that act on states in Bn (Un is just a convenient notation for the group U(2n)). A quantum gate G
corresponds to an element of Un, which is also denoted G. Thus, for example, a single-qubit gate is
an element of U1, acting on states in B1.

We now exhibit the main quantum gates that we will consider. The single-qubit Hadamard gate



is defined by,

H =
1√
2

[
1 1
1 −1

]

Let f : {0, 1}n −→ {0, 1} be a Boolean function of n inputs. Many of our gates take the form,

G|x1, ..., xn, b〉 = |x1, ..., xn, b⊕ f(x1, . . . , xn)〉

This is just an easy form of simulating any classical function in a reversible manner. If
f(x1, . . . , xn) = ∧n

i=1xi, G is called a generalized Toffoli gate, or (in this paper) simply a Tof-

foli gate, and is written as T . If f(x1, . . . , xn) =
n⊕

i=1
xi, G is a parity gate, written P . Generalizing

this, define the classical Boolean function Modq : {0, 1}n −→ {0, 1} so that Modq(x1, . . . , xn) = 1
iff
∑n

i=1 xi �≡ 0 (mod q). If f = Modq, we call G a MODq gate. Next, for any t, define the boolean
function s(x1, ..., xn) = 1 iff

∑n
i=1 xi ≥ t. If f = s, we call G a threshold gate and write it as S.

Finally, the fanout gate F is defined by,

F |x1, ..., xn, b〉 = |b⊕ x1, ..., b ⊕ xn, b〉.

It is known that the T -gate for n = 1 (known as controlled-not, or “CNOT”) together with
single-qubit gates (in particular, the Hadamard, phase, and π/8 gates) are a universal set of gates
in that any unitary operator can be approximated to an arbitrary degree of precision with them.

A quantum circuit is constructed out of layers. Each layer L is a tensor product of a certain
fixed set of gates. A circuit is simply a (matrix) product of layers L1L2 · · · Ld. (Observe that
the “last” layer Ld is actually the one that is applied directly to the inputs, and L1 is the output
layer.) The number of layers d is called the depth of C. A circuit C over n qubits is then a unitary
operator in Un. Clearly, C computes a unitary operator U exactly if for all computational basis
states, C|x1, ..., xn〉 = U |x1, ..., xn〉. This is in general too restrictive, however. One must allow
for the presence of “work bits,” called ancillæ, that make extra space available in which to do a
computation. In that case, in order to exactly compute the operator U we extend the Hilbert
space in which C acts to the 2n+m-dimensional space Bn+m spanned by computational basis states
|x1, ..., xn, a1, ..., am〉, where again xi, ai ∈ {0, 1}, the ai serving as ancillæ. Then we say that C
cleanly computes U if, for any x1, ..., xn and y1, ..., yn,

〈y1, ..., yn, 0, ..., 0|C|x1, ..., xn, 0, ..., 0〉 = 〈y1, ..., yn, 0, ..., 0|(U ⊗ I)|x1, ..., xn, 0, ..., 0〉,

where I is the identity in the subspace that acts on the ancillæ, and the number of 0’s in each state
above is m. That is, C does a clean computation if the ancillæ begin and end all as 0’s. We assume
all of our circuits perform clean computations. This is a reasonable constraint, since only then is
it easy to compose the circuits.

All circuits should be understood to be elements of an infinite family of circuits {Cn|n ≥ 0},
where Cn is a quantum circuit for n input qubits and each circuit family contains a fixed finite set
of gates.

In this paper we deal with various quantum circuit classes which are defined in analogy with
the classical circuit classes, e.g., similar to NCk, QNCk is defined as logk n depth, polynomial size
circuits containing only single qubit and CNOT gates. We list some of the quantum circuit classes
below:



Definition 2.1 Quantum circuit classes

Quantum analogues of NCk

QNCk: consisting of single qubit and CNOT gates (Toffoli gates with n = 1).

QNCk
wf : QNCk + fanout gates.

Quantum analogues of ACk

QACk: consisting of single qubit and Toffoli gates.

QACk
wf : consisting of single qubit, Toffoli and fan-out gates.

Quantum analogues of ACCk

QACCk: QACCk[q] is QACk + MODq gates. QACCk = ∪qQACCk[q].

QACC: QACC is defined as QACC0 and QACC[q] is defined as QACC0[q].

Quantum analogues of TCk

QTCk: QACk + arbitrary fanin threshold gates.

QTCk
wf : QACk

wf + arbitrary fanin threshold gates.

It should be emphasized that these are classes of unitary operators. There are various ways in
which they can be used to define classes of sets, but we will not explore that here.

This is an unacceptably large array of complexity class definitions (perhaps even gratuitous).
Surprisingly and happily, however, most of them are either the same or are very close, unlike the
corresponding classical classes.

3 Upper Bounds

The first hint that something different is going on in quantum circuits is in the intimate relationship
between fanout and parity. There is no obvious a priori relation between these operators, and indeed
we wouldn’t expect there to be any on the basis of our experience with classical circuits. But as
was observed by Moore [15], F is conjugate to P via an (n+ 1)-fold tensor product of Hadamards
applied to all the bits:

F = H⊗(n+1)PH⊗(n+1) (1)

This is a consequence of the well-known fact that a CNOT gate, conjugated with Hadamards, flips
the input and target bits (see Figure 1).
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Figure 1: The parity and fanout gates are conjugates of each other by a layer of Hadamard gates.

It is immediate from this that QAC0
wf = QACCwf [2] = QACC[2]. Contrast this with the famous

classical result of Furst, Saxe and Sipser [11] that parity is not in AC0 (and hence ACC[2] �= AC0).



It is also immediate that for all k, QACk
wf = QACCk

wf [2] = QACCk[2]. Since it is possible to fanout n
copies in log n depth using CNOT (via divide and conquer), we also have QACk ⊆ QACk

wf ⊆ QACk+1

(subsequent results in this survey lead to similar relationships for the k > 0 classes).
The QACC[q] classes for q �= 2 present a more subtle problem. Recall the Razborov/Smolensky

Theorem [21, 24] that says that for any relatively prime q, p, ACC[q] �= ACC[p], and hence ACC[q] �⊆
AC0. One would think, in accordance with this, that the QACC[q] classes are all incomparable with
QACC[2]. In fact the opposite turns out to be true: QACC[q] = QACC[2] for all q.

Figure 2: If a group of gates U1, . . . , Un are simultaneously diagonalizable (Ui = V DiV
†) or are

the same, then they can be applied in parallel using fanout gates. This holds even if the gates are
controlled by some control qubit.

The proof that QACC[q] ⊆ QACC[2] uses the most important technique to date in this area:
parallelization, which was first observed by Moore and Nilsson [16]. A series of commuting (for
example, identical) unitary operations can be implemented in a constant number of layers by
diagonalizing the operators and using fanout to apply the diagonal operators in parallel. The
process is sketched in Figure 2. In this case, the operations we want to parallelize are those that
increment a register mod q:

Mq|x〉 = |(x+ 1) mod q〉,
where x denotes n bits. Applying n controlled Mq gates in series (each Mq controlled by one of the
xi’s) leaves the sum of the bits mod q in a register. Once this is done, applying a Toffoli gate to
the register yields Modq(x1, . . . , xn). Thus, via parallelization, we can do MODq in constant depth
using fanout.

The other direction, QACC[2] ⊆ QACC[q], essentially amounts to showing that there’s nothing
really special about “2” in the conjugacy relation between fanout and parity. This relationship
can be generalized to an analogous one between “fanout of digits base q” and “sum of the inputs
mod q.” This requires a Fourier transform which works on “quantum digit” (rather than qubit)
registers, which is analogous to the Hadamard gate. By a result of Barenco et al. [2], such a
constant-dimensional unitary transformation can be realized in constant depth with just CNOT
and single-qubit gates. With considerable added circuitry to represent the digits as bits, these
techniques result in the following:

Theorem 3.1 [13] For all q, QAC0
wf = QACC[q] = QACC.

The biggest surprise is yet to come. Consider the class QNC0. Like its classical counterpart, it
is not very useful; as we explain later on, no output can depend on all the inputs! What if we add
fanout, as in the class QNC0

wf? Høyer and Špalek showed that with high accuracy, one can compute
threshold functions with only fanout and single-qubit gates, in constant depth!



Theorem 3.2 [14] Let {Fn} be a family of operators in QNC0
wf , QAC0

wf , or QTC0
wf . Then there

is a family of operators {Gn} in either of the other classes that approximates {Fn} with two-sided
polynomially small error.

In a strong sense, therefore, the classes QNC0
wf , QAC0

wf , QTC0
wf (to say nothing of QACC and all

its kindred) are equivalent in computational power. The theorem essentially says that fanout and
single-qubit operations form a universal set of quantum gates.

Proof sketch: The proof of Theorem 3.2 is centered around the parallelization method. To
give the clearest exposition possible, we find it advantageous to follow (initially) an earlier technique
of Špalek [25]. Following exactly his line of reasoning, we sketch how to simulate an exact threshold
gate, in which the boolean function f in the definition is 1 iff

∑n
i=1 xi = t; using this, threshold

gates can be easily constructed. The main roadblock in generalizing Theorem 3.1 to Theorem 3.2
is that the proof of the former relies heavily on the fixed dimensionality of the mod q increment
operator which, by Barenco et al., can be simulated in constant depth. In order to implement an
exact gate, we need to compute the sum of the inputs not mod q, but mod n, where n is the number
of inputs (technically, mod n + 1). Denoting log n as k, the required k-bit increment operator M
is defined as,

M |x〉 = |(x+ 1) mod 2k〉,
where x denotes a k-bit number. M grows exponentially in k so we can no longer rely on Barenco
et al. The way around this problem starts with a simple but quite interesting observation, namely
that M is diagonal in the Fourier basis. This is the basis of the Hilbert space that is obtained when
we perform the quantum Fourier transform,

Q|x〉 = 1
2k/2

2k−1∑
y=0

ωxy|y〉,

where ω = e2πi/2k
. Specifically, a straightforward computation shows that M = Q†DQ, where

D = diag(1, ω, ω2, ω3, . . . , ω2k−1). Although D is a “big” operator, it nevertheless can be written
as a tensor product of single-qubit operators |b〉 �→ ωb|b〉 where b ∈ {0, 1}. Thus if x is a k-bit

string, D|x〉 = ω
∑k

i=1
xi |x〉 = ⊗k

i=1(ω
xi |xi〉).

Figure 3: Compute
∑n

i=1 xi in constant depth by using Q, fanout gates and controlled-D gates.
The n D-gates are parallelized here to reduce the depth.

For computing the sum of the inputs, we really need the M (and hence D) operator to be
controlled by all the respective inputs. In fact, using known properties of U1, the controlled D



operator can be implemented in constant depth with single-qubit and CNOT gates. The next step
is to use this to compute

∑n
i=1 xi, and indeed this can be done with the aid of Q as shown in figure 3.

In the working register of log n bits, the output is exactly the sum of the xi’s. The problem is, we
don’t know if Q can be implemented in constant depth (we will see that it can, but we must avoid
circular reasoning). Špalek’s inspired fix to this was simply to replace the Q and Q† with layers of
Hadamards, and applying a D−t operator to another set of fanned out inputs. The output is no
longer the sum of the xi’s, but it is enough for our purposes: The bits in the output are all 0 if and
only if

∑n
i=1 xi − t = 0. With the aid of a Toffoli gate, we can now determine if

∑n
i=1 xi = t, and it

is done in constant depth.
Thus far we can already see a quite interesting result. If the definition of QAC0

wf allowed an
unbounded number of single-qubit gates in a circuit family (in this case, the operations |b〉 �→ ωb|b〉,
which depend on n), we could conclude from the above argument that QAC0

wf = QTC0
wf exactly.

However, the definition stipulates that only a finite number of such gates are allowed in any circuit
family. Høyer and Špalek [14] showed how to overcome this problem. Any single-qubit gate can
be approximated to arbitrary accuracy by a fixed number of gates, in constant depth. The cost
is a polynomially larger circuit and polynomially small (1/nc) two-sided error. This is enough to
establish the part of Theorem 3.2 regarding the equivalence of QAC0

wf and QTC0
wf .

By further applications of single-qubit gates (or their approximations) and fanouts, Høyer and
Špalek were able to reduce the computation of the final Toffoli gate to a measurement of a quantum
register, whose outcome agrees with OR with small error. Dispensing with the Toffoli gate in this
way gives the theorem as stated and concludes our proof sketch.

There are a number of immediate corollaries that follow from Theorem 3.2 when combined with
some results on classical threshold circuits [23]. For example, iterated multiplication, division, and
sorting of n integers can be done with polynomial-size TC0-type circuits. Hence these operations
can also be approximated in QNC0

wf .

3.1 Quantum Fourier Transform

We saw the role of the quantum Fourier transform (QFT) in the construction above. The QFT is
one of the most widely used unitary transformations in quantum circuits. It is one of the key com-
ponents of many quantum algorithms, like Shor’s [22] quantum algorithm for factoring. An efficient
implementation of the QFT will improve a wide variety of quantum circuits and algorithms. Before
we discuss low depth circuits for the QFT, it is interesting to compare it to its classical counter-
part, the discrete Fourier Transform (DFT). The m-dimensional DFT maps (a0, . . . , am−1) ∈ Cm

to (b0, . . . , bm−1) ∈ Cm where,

bx =
m−1∑
y=0

e(2πi/m)xyay

The fast Fourier transform algorithm can compute the DFT in O(m logm) operations.
The m-dimensional quantum Fourier Transform can be seen as a unitary operation performing

the DFT on the amplitudes of a logm-qubit state, mapping
∑m−1

x=0 αx|x〉 to ∑m−1
x=0 βx|x〉 where,

βx =
1√
m

m−1∑
y=0

e(2πi/m)xyαy

The rest of this section assumes m = 2n and uses ω = e2πi/2n
. Coppersmith [6] showed how to



compute the QFT inO(n2) size and depth.5 The bounds have been reduced further to sub-quadratic
size and linear depth.

One approach to computing the QFT in constant depth can be obtained by inspecting the state
of each qubit in the transformed state.

|Ψx〉 = Q|x〉 = 1
2n/2

2n−1∑
y=0

ωxy|y〉 = 1
2n/2

2n−1∑
y=0

n⊗
k=1

(
ωx2n−kyn−k |yn−k〉

)
=

1
2n/2

n⊗
k=1

(
1∑

b=0

ω2n−kxb|b〉
)

(2)

The “rotations” 1√
2

∑1
b=0 ω

2n−kxb|b〉 = |0〉+e2πix/2k |1〉√
2

, controlled by x, can easily be implemented
in parallel using fanout gates as described before. This suffices to obtain the circuit for |x〉|0〉 �→
|x〉|Ψx〉. This is followed by the relatively harder step |x〉|Ψx〉 �→ |0〉|Ψx〉 to complete the QFT
transformation |x〉|0〉 �→ |x〉|Ψx〉 �→ |Ψx〉|0〉. Cleve and Watrous [4] showed how to compute the
second step (with high accuracy) using log-depth circuits with just CNOT gates. Høyer and Špalek
further adapted Cleve and Watrous’ technique to show that QFT can be approximated with small
error probability in QNC0

wf .
The transformation |x〉|Ψx〉 �→ |0〉|Ψx〉 is computed by first estimating |Ψx〉|0〉 �→ |Ψx〉|x̃〉 using

quantum Fourier phase estimation and then XORing |x̃〉 to |x〉. If the estimate is accurate enough,
then x̃ = x, so we end up with the desired state.

The quantum Fourier phase estimation requires several copies of |Ψx〉, which can be obtained
by using the reversible addition gate: |x1〉 . . . |xt〉 �→ |x1〉 . . . |xt−1〉|∑xi mod 2n〉. Addition mod-
ulo 2n can be computed using threshold gates, which as shown before can be approximated in
QNC0

wf . Using the inverse of the reversible addition gate, we can approximate in constant depth

|Ψx〉|0〉 . . . |0〉 �→ |Ψx〉|Ψx〉 . . . |Ψx〉. Denoting |0〉+e2πix/2k |1〉√
2

by |ρx/2k〉, this gives us multiple copies
of |ρx/2k〉 for each k = 1 · · · n.

The quantum Fourier phase estimation part of the circuit measures the copies of |ρx/2k〉 to
approximately determine all bits of x. Measurement of |ρx/2k〉 = 1√

2
(|0〉 + e2πi(0.xk−1...x0)) in the

basis
{

1√
2
(|0〉 + e2πi· 1

4 |1〉), 1√
2
(|0〉 + e2πi· 3

4 |1〉)
}
and

{
1√
2
(|0〉 + e2πi·0|1〉), 1√

2
(|0〉 + e2πi· 2

4 |1〉)
}
allows

us to estimate xk. Using O(log n/ε) copies of |ρx/2k〉 gives us an estimate x̃ which is ε close to
x. After computing |x⊕ x̃〉|Ψx〉|x̃〉, the ancillæ |x̃〉 are returned to their initial states to perform
a clean computation. All the measurements and the estimation can be done in parallel and the
measurements can be deferred till the end. That gives us a constant depth approximation for
computing the QFT.

Theorem 3.3 [14] The QFT transformation can be approximated with polynomially small error
by a quantum circuit of constant depth using CNOT and a fixed family of single-qubit gates.

4 Lower Bounds

In the last section we saw the surprising power provided by allowing fanout gates in constant
depth quantum circuits. We now turn to the problem of whether, in the presence of single qubit

5Though this looks like an exponential improvement over the classical case, note that unlike the DFT, the QFT
does not explicitly compute (β0, . . .). Intuitively, the difference between DFT versus QFT is analogous to computing
a probability distribution versus sampling from the distribution [4].



gates, these gates are strictly more powerful than (unbounded) Toffoli gates and are necessary for
simulating stronger classes.

We seek to fill a gap in our understanding of the relative power of Toffoli and fanout gates
in quantum circuits. Roughly speaking, we know that given fanout, we can do fanin, where by
fanin, we mean the quantum gates, for example the Toffoli gate, in which one output qubit of the
gate depends on the values of (unboundedly) many inputs qubits. But can fanout do more? Are
generalized Toffoli gates and fanout gates equivalent in power, up to polynomial size and constant
depth; i.e., are QAC0 and QAC0

wf equal? We believe they are not, and thus that fanout gates are
strictly more powerful.

In answering this question we find it necessary to grapple with another likely limitation of real
quantum computers. It is evident that they will be limited not only in their run-time duration
but also by the number of qubits used in the computation, due to the difficulty in controlling the
interactions of multiple qubits. It will be necessary to identify computations which use as few
ancillæ as possible. Thus we consider here the number of ancillæ used by a circuit as an additional
computational resource, and investigate cases where this resource is limited.

The main result of this section is that one cannot compute parity (and hence fanout) with QAC0

circuits using a constant number of ancillæ. This is the first hard evidence that QAC0 and QAC0
wf

may be different, and that fanout may be necessary for all the upper bound results mentioned in
Section 3 (it certainly is if we limit our computations to only constantly many ancillæ). The issue
of the necessity of ancillæ in quantum computations is a murky one. It is generally accepted that
a limited number (polynomially many relative to the number of inputs) are allowed. This seems
reasonable as it allows polynomial extra space in which to carry out a computation. However, it
is possible to approximate any unitary operator with a small set of universal gates without ancillæ
(although one needs circuits of exponential depth and size in order to do so [17]). Furthermore,
to our knowledge, no systematic investigation into the absolute necessity of ancillæ for efficient
quantum computation has been done.

Our main lower bound theorem states:

Theorem 4.1 [8] Let C be a circuit of depth d consisting of single-qubit gates and Toffoli gates,
and using 0 ancillæ. Then, if d ∈ o(log(n)), C cannot compute the fanout operation.

The theorem can be generalized to circuits with a limited number of ancillæ. Namely, in the
case of a non-constant number a of ancillæ and n input qubits, we have a tradeoff between a and
the required depth, that results in a non-constant lower bound for fanout when a = n1−o(1).

It is not hard to see, via a divide and conquer technique using CNOT gates, that one can
compute parity in depth 2 log n + 1. We conjecture that this is optimal no matter what a is, and
regardless of allowed size of Toffoli gates. However, the best lower bound on depth we can obtain
is 1.44 log n− 1 for 0 ancillæ. With a more careful analysis, we find that circuit depth lower bound
of at least 1.44 logm− 1 is required for any function with the property that, for any input string x,
there is a set of m bits such that flipping any one of them changes f(x) (The integer m is known
as the sensitivity of the function f [18]). So more succinctly, any function of sensitivity m must
have at least 1.44 logm− 1 depth.

The proof of the lower bound is quite long and can be found in [8]. We limit ourselves here to
a brief discussion of the central ideas of the proof and its most interesting aspects.

We first consider the case of QNC0 circuits when the quantum circuit contains only 1 and 2
qubit gates. The intuition behind the proof for this case of the main theorem seems quite obvious.



Namely, if such a circuit has depth d, then any output qubit of the circuit can depend on at most
2d input qubits. This fact is obvious for classical circuits, by a simple connectivity argument. One
might think it equally easy in the quantum case, but the picture of a quantum computation as a
“classical” circuit can be deceiving. It is therefore important to verify carefully the intuitive fact
that a quantum circuit must connect all the qubits on which its output depends to the qubit we
will measure for the output. Furthermore, the technique we use here underscores the difficulties
for the more general lower bound theorem for circuits including large Toffoli gates.

Figure 4: Decomposition of the layers of the QNC0 circuit C.

Let C = L1 · · · Ld consist entirely of arbitrary two-qubit gates and single-qubit gates. (The
extension to arbitrary, but fixed-size gates is straightforward.) Further suppose that M is an
observable on a single qubit in the last layer. Let L′

1 denote the gate whose outputM is measuring
(Figure 4). L′

1 could be a two-qubit or a single-qubit gate. In either case, L1 = L′
1 ⊗ R1, where

R1 is the tensor product of all the other gates in that layer, if any. If we only had this one
layer, the result of the measurement M is determined by the expectation value of the operator
(L′

1 ⊗ R1)†M(L′
1 ⊗ R1). Since M commutes with R1, the R1’s cancel, and the only gate involved

is L1. We proceed to include more layers, that is, decomposing layer i by writing Li = L′
i ⊗ Ri,

where L′
i is a transformation that acts on some subset of the bits involving M , and Ri acts on the

rest. A similar thing happens with these other layers. M remains sandwiched between some of
the operators L′

i, but the Ri’s cancel and by induction the width of the layers L′
i that remain is at

most 2d.
From this result on connectivity of quantum circuits, we immediately obtain,

Theorem 4.2 [8] Let C be a QNC0 circuit on n inputs and depth d with any number of ancillæ
that cleanly computes parity exactly. Then d ≥ log n. If C computes fanout in the same way, then
d ≥ log n− 2.

The theorem actually applies not only to parity but to any function whose output depends on
all of its inputs. The proof technique can also be used to establish that constant depth circuit
families with gates of bounded arity are not capable of simulating Toffoli gates.

We now turn to the separation of circuits with (unbounded) Toffoli gate and fanout gates. To
see how to proceed, it is useful to briefly consider classical circuits with similar constraints. Suppose
we have a classical circuit with NOT gates and unbounded fan-in AND and OR gates, but that
we do not allow any fanout. Once inputs (or outputs of other gates) are used in either an AND or



an OR gate, they cannot be used again. It is obvious that if such a circuit has constant depth, it
cannot compute such functions as parity. The AND and OR gates can be killed off by specifying
their values on a small set of inputs, resulting in a constant function, while parity depends on all
the inputs.

In the quantum case, it appears again that the only thing to do is to attempt to “kill off” the
large Toffoli gates. However, the quantum case is much more subtle since we must face the fact
that intermediate states are a superposition of computational basis states, and furthermore that
the Toffoli gates, in combination with the single-qubit gates, may cause entanglement.

Figure 5: The sets Ri and L′
i for each layer i. A Z gate involving bits in both sets is shown.

Assume we have a circuit C composed of d levels L1, L2 · · ·Ld. The circuit C transforms the
state |Ψ〉 to L1 · · ·Ld|Ψ〉.We assume without loss of generality that each layer Li is a tensor product
of Z-gates6 and single-qubit gates. Further assume without loss of generality that a specific bit
(say, the nth bit) of C serves as the output or target bit (which eventually is supposed to agree
with the output bit of a parity gate).

Our method is to work backward through he levels of C starting from the target qubit (refer to
Figure 5). We fix the target bit to 0. We prove that there is a small set of bits in layer i that are
involved in a quantum state |Ψi〉 that serves (when used as input at that layer) to keep the target
bit at its fixed 0 value. Bits that are not involved in the construction of the state in the previous
layer but that are inputs to Z-gates are set to 0 (to kill the Z-gate; this set of bits is denoted Ri

in Figure 5). Bits that are involved (denoted L′
i in Figure 5) are allowed to propagate backwards

through the layer, which can result in entanglement. The number of bits that are “committed to
0” (the size of L′

i) at any layer at most doubles as we work backwards through the layers. Thus we
find that the number of bits involved in |Ψi〉 at the ith level is at most 2i. For the full circuit of
depth d, there thus exists a state |Ψd〉 involving only 2d bits that, when applied to the circuit, will
force the output to be 0. Hence if there are more than 2d input bits to the circuit, the target bit
is insensitive to some inputs and the circuit cannot compute parity exactly.

The above sketch works as well for circuits with limited numbers of ancillæ. The idea is simply
to fix the ancillæ just as we fixed the target bit, and construct a state that guarantees they are
0 by working backwards. However, fixing many ancillæ (e.g., n of them) could force us to use all

6Such gates flip the sign of |x1, ..., xn〉 iff ∧n
i=1xi = 1. They are equivalent to Toffoli gates conjugated with

Hadamards at the target. They are more convenient to use here as they do not have a preferred target bit.



the inputs, and the proof breaks down. Thus, for a small number of ancillæ, we obtain a tradeoff
between the depth of the circuit and the number of ancillæ it may have. Furthermore, a more
careful analysis shows that bits are committed to 0 in approximately alternate layers, which leads
to the factor of the golden ratio φ in the theorem.

Theorem 4.3 [8] Let C be a depth d circuit of n inputs, consisting of single-qubit gates and Z-
gates, and using a ancillæ, with n > (a + 1)φd+1. If d < log n

log φ − 1 ∼= 1.44 log n − 1, then C cannot
compute P , the parity gate with n− 1 inputs and one target.

The circuits described above required the ancillæ to be initialized to 0. Also all the circuits were
doing clean computation, i.e., the ancillæ were 0 at the end. Clean computation ensures that circuits
can be easily composed and ancillæ reused. There could be circuits which require the ancillæ to
be initialized to a specific state. A clean circuit would return the ancillæ to the beginning state at
the end.

There are some cases where we might want the circuit to work with any value in the ancillæ.
Initializing the ancillæ to a specific state might be difficult. A standard technique used for clean
computation is to copy the result to the output qubit and then apply the reverse computation to
return the ancillæ to their initial state. For some circuits this technique does not work. Parker and
Plenio [20] show that arbitrary initial states can be used in the quantum part of Shor’s factoring
circuit. Fang et al. [8] define robust computation if the circuit works with any initial state of the
ancillæ but returns the ancillæ to the initial state in the end. This puts a stronger constraint on
the circuit. It can be shown that any circuit needs log n depth to robustly compute parity using
only single-qubit gates and Toffoli gate, regardless of the number of ancillæ used.

5 Open Problems

1. Is QAC0 properly contained in QAC0
wf? Stated in more detail, is it not the case that a fanout

gate can be computed in constant depth with polynomially many generalized Toffoli gates,
single-qubit gates, and polynomially many ancillæ?

2. A similar question applies to QTC0 versus QTC0
wf . It is unknown if threshold and fanout

gates are equally powerful.

3. Can QTC0 or QTC0
wf be simulated exactly by QACC circuits, using a fixed number of single-

qubit gates?

4. We have seen three different classes of constant depth quantum circuits namely, QNC0, QAC0

and QAC0
wf . (QNC0 is provably different from QAC0 and QAC0

wf , and the results of Section
4 give evidence that QAC0 and QAC0

wf are different as well.) The last class, QAC0
wf , is quite

general and its computational power does not change, even if we add mod gates and threshold
gates. Can every class of constant depth quantum circuits composed of single qubit gates and
some finite sets of other gates be simulated by one of the classes QNC0, QAC0 or QAC0

wf?

5. We sketched how a threshold gate can be approximated by fanout and single-qubit gates in
constant depth with polynomially small error. Can the error be made exponentially small
preserving constant depth?



6. The ability to compute either parity or fanout in constant depth (provided we have Hadamard
and CNOT gates) is equivalent to the ability to create a “cat state,” of the form 1√

2
(|00 . . . 0〉+

|11 . . . 1〉) (with n 1’s and 0’s), in constant depth [8, 15]. Assuming the answer to the question
posed in (1) is affirmative, what insight does this give us into the nature of entanglement?
In particular, does a useful entanglement measure emerge (in terms of the size and depth
requirements for producing a state)? Alternatively, can existing entanglement measures (see,
for example, [5]) be used to answer the question posed in (1)?

7. A significant roadblock to lower bounds in this area is the presence of ancillæ. The existing
results give trade-offs between circuit size and the number of ancillæ. What techniques can be
developed to obtain stronger trade-offs of this type either in this context or in more general
settings?

8. There are further interesting questions concerning the power of ancillæ in quantum compu-
tation which have never been fully explored. For example, does there exist a function which
needs more than linearly many ancillæ when computed by a constant depth quantum circuit
family? More specifically, is computing parity using Toffoli and single qubit gates possible
using linearly many ancillae? Many other variants of this question arise easily and have no
ready answer.
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